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We report observations of mechanical energy localization in a strongly nonlinear discrete lattice. The ex-
perimental setup we consider is a one-dimensional nonloaded horizontal chain of identical spheres interacting
via the nonlinear Hertz potential which contains a mass defect. Our experiments show that the interaction of a
solitary wave with a light intruder excites a nonlinear localized mode. In agreement with dimensional analysis,
we find that the frequency of localized oscillations exceeds the incident wave frequency spectrum and nonlin-
early depends on incident wave strength and on mass and size of the intruder. The absence of tensile stress
between grains allows some gaps to open, which in turn induces a significant enhancement of the amplitude of
oscillations. We performed numerical simulations that precisely describe our observations without any adjust-
ing parameters.
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Linear wave localization has been studied for long in dis-
crete systems �1� or lattices �2,3�. For instance, the presence
of isotopes in crystals are known to enhance optical absorp-
tion at given frequencies �4�. In turn, the interplay between
discreteness and nonlinearity give rise to novel topological
dynamics, such as envelope modes �5�, breathers �6�, or in-
trinsic localized modes �7�. The underlying mechanism lead-
ing to energy localization in nonlinear lattices is general and
relevant for a wide variety of applications, from modern en-
gineering problems to solid-state physics �see �5–8� and ref-
erences therein�. In this frame, one-dimensional nonlinear
lattices have received attention since the first efforts of
Fermi, Pasta, and Ulam in the mid-1950s �8�. Several inves-
tigations have tackled the problem of energy localization in
nonlinear lattices with impurities, as for instance in Toda
chains �9,10�. Remarkably, these lattices have been shown to
share common features regarding energy localization on de-
fects, independently of the potential interaction �11�.

One-dimensional chains of elastic spheres �Hertz potential
interaction� are systems suitable to observe nonlinear phe-
nomena. In nonloaded chains, energy only propagates as
fully nonlinear solitary waves �12–15� resulting from the bal-
ance between nonlinearity and nonlinear dispersion due to
discreteness �13�. Any heterogeneity capable of unbalancing
this equilibrium results in breaking the solitary wave sym-
metry, as shown for instance in tapered chains �16–18� or in
stepped chains �12,19�, in which solitary waves broaden or
split into trains of solitary waves. Solitary wave trains for-
mation in stepped chains involves stress oscillations local-
ized near the interface �19�. Designing impact protection sys-
tems takes advantage of these features �20,21�. Effects of
disorder on localization has also been investigated earlier in
chains of randomly sized spheres �13� and more recently in
diatomic chains with randomly oriented cells �22�. When
loaded by static compression, Hertzian chains sustain linear
acoustic waves and exhibit frequency band gaps �23�, which
in turn may lead to wave localization. In all these cases, the
presence of defects substantially modifies the dynamics of
the lattices. The elementary interaction of either lighter or
heavier intruders with shock waves has been investigated

numerically �24�. When reached by a shock wave, a heavy
impurity slowly translates, leading to a large transmitted soli-
tary waves train in the forward direction �24�. A light in-
truder oscillates and scatters forward and backward weak
delayed solitary wave trains �24�.

In this Rapid Communication, we investigate experimen-
tally the dynamics of a single light defect in a nonloaded
monodisperse chain of elastic spheres. We observe localized
oscillations of the impurity while interacting with a solitary
wave. We show that the presence of spatial gap between the
intruder and nearest neighbors enhances the oscillation am-
plitude. A multiscale analysis of the equations of motion of
particules allows us to predict the frequency of oscillations
as a function of wave strength and intruder mass and size.
We also perform high-resolution numerical simulations that
capture the experimental features.

Beads are 100C6 steel roll bearings �25� with density �
=7780 kg /m3, the Young’s modulus Y =203�4 GPa, and
Poisson ratio �=0.3. The chain is made of 20 equal beads
�radius R=13 mm� and contains an intruder �2.5�Ri
�10 mm� in the middle, as shown in Fig. 1. The beads,
barely touching one another, are aligned on a horizontal
Plexiglas track. A special short track automatically aligns the
intruder on the axis of the chain �18�. The chain is ended by
a flat, fixed, and heavy piece of steel. A nonlinear compres-
sive wave �see below� is initiated from the impact of a small
striker �Rs=4 mm�. The pulse is monitored by measuring the
load with a piezoelectric transducer �PCB 200B02, sensitiv-
ity 11.24 mV/N, and stiffness 1.9 kN /�m� inserted inside a
bead cut in two parts. The total mass of the active bead
matches the mass of an original bead and the rigidity of the
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FIG. 1. Experimental setup showing a chain of beads with an
intruder, sensors, and acquisition facilities.
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sensor is comparable to bead’s material properties. The em-
bedded sensor thus allows nonintrusive measurements of the
force inside the chain �15�.

Typical force signals measured by the embedded sensor in
contact with the intruder, plotted in Fig. 2�a1�, show that well
defined oscillations appear in the tail of the incident solitary
wave. The tail corresponds to a slight reflection of the
incident pulse on the mass defect. Measured oscillations in
the tail of the force are displayed in more details in Figs.
2�a3-a6� for increasing amplitudes of the incident solitary
wave. Dissipative processes being negligible �15�, conserva-
tive numerical simulations �see below� shown in Fig. 2�b1�
demonstrate satisfactory agreements with experiments, with-
out any adjusting parameter. Calculated overlaps between the
intruder and neighbor beads, shown in Fig. 2�b3� �see also
the relative displacements in Fig. 4�a��, demonstrate that os-
cillations in the tail of the force correspond to localized os-
cillations of the defect. Figures 2�a2� and 2�b2� depict power
spectral densities of experimental and calculated forces, re-
spectively, in which the high-frequency component corre-
sponds to the observed oscillations.

Figure 3 presents a longer force acquisition, in which the
incident pulse and the pulse reflected by the rigid end are
shown. Force signals exhibit features at two different time
scales that are separated by filtering low- or high-frequency
contents, as shown in Fig. 3�c�. Oscillations are only ob-
served when the intruder is loaded by the solitary wave. In
Fig. 3�a�, intruder oscillations are only visible in the tail of
the incident pulse �0.0� t�1.0 ms�. Stronger and relatively
faster oscillations can be observed in the reflected pulse
�1.5� t�3.0 ms�, both during the main compression and in
the tail. Gap openings between the intruder and neighbor

beads might explain the differences between incident and
reflected pulses features. We designed an electrical switch
�smooth metallic brushes in contact with neighbor beads,
connected to a fast transistor electrical circuit, see Fig. 1� to
detect any loss of contact. The switch is on �1� when beads
are in contact and off �0� when loss of contact occurs. As
shown in Fig. 3�b�, gap first opens right after the incident
compression �t�0.5 ms and t�2.1 ms� and second at the
end of tail �t�1.1 ms and t�2.7 ms�. The first opening is
due to the weak reflection of the pulse on the mass defect,
and the second one is due to the momentum and energy
transfer from the oscillating intruder to neighbors. Higher
amplitude oscillations appear provided a gap between the
intruder and neighbor exists.

These observations are corroborated by numerical simu-
lation. Indeed, calculated displacements of the intruder and
neighbors shown in Fig. 4�a� and the overall gap around the
intruder �the difference between left and right neighbor beads
displacements� shown in Fig. 4�b� demonstrate that gaps
open twice at the intruder, consistently with our experiments.
Figure 4�c�, showing the intruder displacement relative to the
center of mass of the two neighbors beads, reveals that in-
truder oscillations even exist during the main compression of
the incident pulse �0.5� t�1.0 ms, see magnified view in

FIG. 2. Panels �a1-a6� are experiments and �b1-b3� are numeri-
cal simulations both performed in a monodisperse chain containing
a 3 mm in radius intruder. Dashed line in �a1,b1� is the six beads far
the intruder incident solitary wave force versus time, and solid line
is the force versus time at the left intruder’s contact. Power spectral
densities of these forces are plotted in �a2,b2�, respectively, show-
ing high-frequency content in the intruder force. Closer views of
oscillating tail in the intruder’s force are shown in �a3-a6� for in-
creasing incident force magnitude �14.1, 17.3, 22.7, and 26.3 N,
respectively�. Solid and dashed lines in �b3� represent overlaps be-
tween the intruder and left and right neighbor beads, respectively.

FIG. 3. Force versus time as detected by the embedded sensor in
contact with a 3 mm in radius intruder. The first large peak in �a� is
the incident solitary wave, and the second one is the wave after
being reflected by the rigid end. The gap opening between intruder
and nearest beads is indicated in �b� by jumps from upper to lower
level in the contact switch. High- and low- frequency components
of the force, shown in �c�, are obtained by using a tenth order
Butterworth filter with zero phase distortion.

FIG. 4. Numerical simulations of the incident pulse, under same
conditions as in Fig. 2�b1�. �a� Positions versus time of the intruder
and left and right neighbor beads. �b� Overall gap around the in-
truder demonstrating gap openings occur when a solitary wave
crosses the intruder. �c� Intruder displacement relative to the center
of mass of the two neighbor beads. �d� Magnified relative displace-
ment during the compression.
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Fig. 4�d��. Momentum transfer is enhanced by larger strain
gradient in the presence of gaps.

Next, we analyze how oscillations depend on incident
wave strength and on intruder parameters. Frequency of os-
cillations is obtained from the analysis of power spectral
densities of the force. Measurements are repeated nine times
and averaged to minimize errors. We first run a set of experi-
ments at constant intruder size �Ri=2.5 mm� while varying
the amplitude of the incident solitary wave. The force ampli-
tude is obtained from the low-pass filtered signals and results
are presented in Fig. 5�a�. We then keep the incident pulse
amplitude constant �8.7�0.6 N� and test several intruder
sizes, as depicted in Fig. 5�b�. Experiments show that the
frequency of the intruder nonlinearly increases with the inci-
dent solitary wave strength and depends on the intruder size.

The physical behavior of solitary waves in chains of equal
beads and implications for the existence of localized modes
is summarized here. Under elastic deformation, the energy
stored at the contact between two elastic bodies submitted to
an axial compression corresponds to Hertz potential, UH
= �2 /5��	5/2, where 	 is the overlap deformation between
bodies, �−1= �
+
���R−1+R�−1�1/2 and 
=3�1−�2� / �4Y� are
constants, and where R and R� are the respective radii of
curvatures at the contact. The force felt at the interface de-
rives from Hertz potential, FH=�	UH=�	+

3/2. Index + indi-
cates that Hertz force is zero when the beads loose contact
�no tensile force�. The dynamics of a chain of beads is thus
described by the following system of N-coupled nonlinear
equations:

mün = ���un−1 − un�+
3/2 − �un − un+1�+

3/2� , �1�

where m and un are the mass and the position of bead n,
respectively. Considering long-wavelength perturbations,
such that the strain �= �−�xu���	 /2R���u /��1, a con-
tinuous equation can be derived from Eq. �1�, which
admits an exact solution �13� in the form of a purely com-
pressive and periodic traveling wave, ��x , t�=�m cos4��x
−vt� / �R�10��. Wave speed, v��m

1/4, nonlinearly depends on
maximum strain. Infinitely small perturbations in the acous-
tic limit propagate at zero speed, linear waves are thus for-
bidden. One hump of this periodic function represents a soli-

tary wave solution �13�. In addition to analytical estimations,
we solve the nonlinear system of Eq. �1� by using a fourth
order Runge-Kutta numerical scheme �26�, the embedded
force sensor being incorporated in simulations for closer
comparisons �27�. Numerical time step is few orders of mag-
nitude smaller than the shortest physical duration and energy
conservation is fulfilled within a relative error better than
10−9.

The characteristic frequency of localized oscillations can
be estimated through a multiscale analysis of Eq. �1�. Here,
index n denotes the intruder with radius Ri and mass mi
= �4 /3���Ri

3, and �i=��R ,Ri�=��Ri ,R� is the elastic con-
stant that depends on radii and properties of the beads. Index
n�1 denote the two neighbor beads with radius R�Ri. We
consider two distinct time scales: a slow time scale of the
order of solitary wave duration and a fast time scale associ-
ated with intruder oscillations. Displacements of the intruder
and neighbor beads are written as un� ūn+ ũnei�t and un�1
� ūn�1, where ūn and ũn are slowly varying functions of
time. Harmonic oscillations amplitude is assumed negligible
compared to solitary wave amplitude, ũn ūn. Using this an-
satz into Eq. �1� leads to

ǖn �
�i

mi
��ūn−1 − ūn�+

3/2 − �ūn − ūn+1�+
3/2� , �2�

�2 �
3

2

�i

mi
��ūn−1 − ūn�+

1/2 + �ūn − ūn+1�+
1/2� , �3�

where the first equation, at leading order, provides the dis-
placement of the intruder at slow time scale. The second
equation, at next order, determines the angular frequency of
the oscillating intruder. We then introduce slowly varying

forces at the contacts of the intruder, F̄−=�i�ūn−1− ūn�+
3/2 and

F̄+=�i�ūn− ūn+1�+
3/2. Noticing that they almost behave in

phase �F̄+� F̄−, see Fig. 2�b3��, the first equation indicates
that intruder acceleration oscillates around equilibrium posi-
tion, ǖn�0. The second equation provides the maximum os-
cillation frequency fm=max�� /2�� as a function of the am-

plitude of the slow time force at the intruder contact, F̄m

�max�F̄+��max�F̄−�:

fm �
31/2

2�

�i
1/3F̄m

1/6

mi
1/2 � C

�R/Ri�4/3F̄m
1/6

�1 + Ri/R�1/6 , �4�

where C= �3 /4����� / �2
R4�1/3. Equation �4� shows that os-
cillation frequency tends to zero when the load vanishes:
oscillations stops as soon as the solitary wave leaves the
intruder. Using the characteristics of our beads, we find a
theoretical estimation, Ct=2640 Hz /N1/6. Matching Eq. �4�
to experiments and simulations shown in Fig. 5, we find Ce
=2510�151 Hz /N1/6 and Cn=2531�52 Hz /N1/6, respec-
tively. The agreement among experiments, simulations, and
theory shown in Fig. 5 is satisfactory, considering that no
adjustable parameters is used between experiments and
simulations.

Equation �4� can also be obtained by considering the low-

frequency force envelope amplitude, of the order of F̄m, as a

FIG. 5. Panel �a� shows frequency versus force’s envelope am-
plitude for an Ri=2.5 mm in radius intruder. Triangles and circles
correspond to experimental frequency detected in the tail of the
incident pulse and in the reflected pulse, respectively. Panel �b�
shows frequency versus intruder’s radius measured in the reflected

signal, whose envelope amplitude was fixed to F̄m=8.7�0.6 N.
Dashed lines correspond to numerical simulations and straight lines
corresponds to Eq. �4�.
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static load at the time scale of fast oscillations, which in-
duces an in situ band gap �23�. The dynamics of a loaded
monodisperse chain of beads of mass m behaves according to
linearized Hertz potential around static equilibrium; the in-
tergrain stiffness reads k��3 /2��2/3F̄m

1/3. Small perturbations
propagate as acoustic waves according to the dispersion re-
lation �= �2�k /m��sin�qR��. Forcing a single particle to
move at an angular frequency � above the cutoff �c

=2�k /m generates an evanescent wave since the wave num-
ber is qR=� /2− j cosh−1�� /�c�. The group velocity vg
= �� Re�q� /���−1 is zero and the perturbation remains local-
ized within a characteristic distance xc= �Im�q��−1

=R /cosh−1�� /�c�. Localization achieves when replacing a
single particle by a light intruder with mass mim. Roughly
estimating the angular frequency of the intruder from the free
oscillation frequency between two heavy nonoscillating

neighbors �i��2ki /mi, where ki��3 /2��i
2/3F̄m

1/3, leads to
Eq. �4� expression. The frequency of oscillations exceeds the
cutoff �i��c and the energy remains localized within a
characteristic distance that does not depend on static load
and which is smaller than a single radius, xcR.

It should be pointed out that weak delayed solitary wave
trains, responsible for nonlinear leak of oscillating energy
from the intruder to surrounding �24�, were detected few

beads before or after the intruder in long duration force ac-
quisitions �not shown in this Rapid Communication�. This
attenuation mechanism leads to an exponential decay of the
oscillating amplitude within a characteristic time much
longer than the duration of the low-frequency force enve-
lope, �leak /�LF��m /mi�1, provided mim.

In conclusion, we have reported the first experimental ob-
servations of energy localization in a strongly nonlinear dis-
crete lattice of elastic spheres. The interaction of a traveling
wave with a light defect induces a local strain gradient which
excites localized oscillations. The amplitude of these oscilla-
tions is enhanced by the presence of spatial gap near the
intruder. Localized energy is unable to radiate linear acoustic
waves since they are not sustained in adjacent nonloaded
chains. Such nonlinear localization traps part of the incident
energy and shifts the frequency spectrum according to the
incident strength and the mass of the defect; this might play
an important role in intense wave mitigation. It is also likely
to appear in polydisperse three-dimensional granular assem-
blies and lead to sound trapping by light weakly loaded
grains.

This work was supported by Conicyt under Fondap Re-
search Program No. 11980002.
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